95,751 research outputs found

    Lipopolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary cells in the presence of adenovirus

    Get PDF
    Endotoxin (lipopolysaccharide, LPS) is commonly found as a contaminant in plasmid DNA preparations. We demonstrate here that the quantities of LPS typically contaminating DNA preparations can generate a toxicity to primary cells (primary human skin fibroblasts, primary human melanoma cells) in the presence of entry-competent adenovirus particles. Toxicity can be observed with as little as 100 ng/ml free LPS or 100 pg/ml LPS when the LPS is assembled into polylysine/adenovirus complexes. Simple and effective methods of removing the contaminating LPS using either a polymyxin B resin or Triton X-114 extraction are described. Treatment of DNA samples to remove LPS eliminates the toxicity to primary cells

    Gut-Derived Serum Lipopolysaccharide is Associated With Enhanced Risk of Major Adverse Cardiovascular Events in Atrial Fibrillation: Effect of Adherence to Mediterranean Diet

    Get PDF
    Gut microbiota is emerging as a novel risk factor for atherothrombosis, but the predictive role of gut-derived lipopolysaccharide (LPS) is unknown. We analyzed (1) the association between LPS and major adverse cardiovascular events (MACE) in atrial fibrillation (AF) and (2) its relationship with adherence to a Mediterranean diet (Med-diet)

    Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane

    Get PDF
    Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and “snapshots” to reveal LPS translocation steps across the outer membrane

    Role of p52 (NF-κB2) in LPS tolerance in a human B cell line

    Get PDF
    Cells of the weakly CD14 positive human B cell line RPMI 8226, clone 1, will mobilize NF-κB (p50/p65 and p50/p50) proteins and produce TNF mRNA when stimulated with lipopolysaccharide (LPS), When such cells are precultured with a low amount of LPS (50 - 250 ng/ml) for 3 - 4 days followed by a secondary stimulation with a high dose of LPS (1 mu g/ml) then the cytokine expression is strongly reduced, i.e, the cells have become tolerant. Western blot analysis of proteins of the NF-kappa B/rel family demonstrates cytoplasmic p50 and p65 for naive B cells plus a low level of p52. While with tolerance induction the pattern of p50 and p65 proteins remains essentially unchanged, the LPS tolerant 8226 cells show a dramatic increase of both p52 protein and its p100 precursor in the cytosol. This p52 is found strongly upregulated in Western blots of extracts from purified nuclei of tolerant cells, Also, gelshift analysis with the -605 kappa B motif Of the human TNF 5'-region shows an additional high mobility complex in LPS tolerant cells - a complex that is supershifted with an anti-p52 antibody, Functional analysis with the -1064 TNF 5'-region in front of the luciferase reporter gene demonstrates that transactivation of the TNF promoter is strongly reduced in tolerant cells, Also, overexpression of p52 will suppress activity of TNF promoter reporter gene constructs. Taken together these data show that tolerance to LPS in the human RPM1 8226 a cell line involves upregulation of the p52 (NF-kappa B2) gene, which appears to be instrumental in the blockade of TNF gene expression

    Placental-mediated increased cytokine response to lipopolysaccharides: a potential mechanism for enhanced inflammation susceptibility of the preterm fetus.

    Get PDF
    BackgroundCerebral palsy is a nonprogressive motor impairment syndrome that has no effective cure. The etiology of most cases of cerebral palsy remains unknown; however, recent epidemiologic data have demonstrated an association between fetal neurologic injury and infection/inflammation. Maternal infection/inflammation may be associated with the induction of placental cytokines that could result in increased fetal proinflammatory cytokine exposure, and development of neonatal neurologic injury. Therefore, we sought to explore the mechanism by which maternal infection may produce a placental inflammatory response. We specifically examined rat placental cytokine production and activation of the Toll-like receptor 4 (TLR4) pathway in response to lipopolysaccharide exposure at preterm and near-term gestational ages.MethodsPreterm (e16) or near-term (e20) placental explants from pregnant rats were treated with 0, 1, or 10 μg/mL lipopolysaccharide. Explant integrity was assessed by lactate dehydrogenase assay. Interleukin-6 and tumor necrosis alpha levels were determined using enzyme-linked immunosorbent assay kits. TLR4 and phosphorylated nuclear factor kappa light chain enhancer of activated B cells (NFκB) protein expression levels were determined by Western blot analysis.ResultsAt both e16 and e20, lactate dehydrogenase levels were unchanged by treatment with lipopolysaccharide. After exposure to lipopolysaccharide, the release of interleukin-6 and tumor necrosis alpha from e16 placental explants increased by 4-fold and 8-9-fold, respectively (P < 0.05 versus vehicle). Conversely, interleukin-6 release from e20 explants was not significantly different compared with vehicle, and tumor necrosis alpha release was only 2-fold higher (P < 0.05 versus vehicle) following exposure to lipopolysaccharide. Phosphorylated NFκB protein expression was significantly increased in the nuclear fraction from placental explants exposed to lipopolysaccharide at both e16 and e20, although TLR4 protein expression was unaffected.ConclusionLipopolysaccharide induces higher interleukin-6 and tumor necrosis alpha expression at e16 versus e20, suggesting that preterm placentas may have a greater placental cytokine response to lipopolysaccharide infection. Furthermore, increased phosphorylated NFκB indicates that placental cytokine induction may occur by activation of the TLR4 pathway

    Varying the Abundance of O Antigen in \u3cem\u3eRhizobium etli\u3c/em\u3e and Its Effect on Symbiosis with \u3cem\u3ePhaseolus vulgaris\u3c/em\u3e

    Get PDF
    Judged by migration of its lipopolysaccharide (LPS) in gel electrophoresis, the O antigen of Rhizobium etli mutant strain CE166 was apparently of normal size. However, its LPS sugar composition and staining of the LPS bands after electrophoresis indicated that the proportion of its LPS molecules that possessed O antigen was only 40% of the wild-type value. Its LPS also differed from the wild type by lacking quinovosamine (2-amino-2,6-dideoxyglucose). Both of these defects were due to a single genetic locus carrying a Tn5 insertion. The deficiency in O-antigen amount, but not the absence of quinovosamine, was suppressed by transferring into this strain recombinant plasmids that shared a 7.8-kb stretch of the R. etli CE3 lps genetic region α, even though this suppressing DNA did not carry the genetic region mutated in strain CE166. Strain CE166 gave rise to pseudonodules on legume host Phaseolus vulgaris, whereas the mutant suppressed by DNA from lps region α elicited nitrogen-fixing nodules. However, the nodules in the latter case developed slowly and were widely dispersed. Two other R. etli mutants that had one-half or less of the normal amount of O antigen also gave rise to pseudonodules on P. vulgaris. The latter strains were mutated in lps region α and could be restored to normal LPS content and normal symbiosis by complementation with wild-type DNA from this region. Hence, the symbiotic role of LPS requires near-normal abundance of O antigen and may require a structural feature conferred by quinovosamin

    The Effects of Acute Lipopolysaccharide Induced Inflammation on Spinal Cord Excitability

    Get PDF
    Peripheral inflammation alters the excitability of dorsal horn interneurons and increases flexor reflex strength (Dubner & Ruda, 1992); however, its effect on the spinal stretch reflex is not well understood. The stretch reflex is a muscle contraction in response to muscle stretch. We hypothesize that the acute inflammation caused by an injection of lipopolysaccharide (LPS) will cause an increase in spinal cord excitability. To test this hypothesis, we measured Hoffman’s (H) reflex, the electric analog of the stretch reflex in adult mice receiving an injection of LPS (.5mg/kg) or saline (200μl). Adult male and female mice (C57Bl/6) were anesthetized; then, the sciatic nerve was exposed and stimulated at current strengths from H-wave threshold (T) to 8T (20 x 0.1 ms pulses at 0.1 Hz). Recording electrodes were placed in the foot. We measured the maximum M wave amplitude (Mmax), maximum H wave amplitude (Hmax) and latencies of both waves. We compared the ratio of the maximal H wave over the maximal M wave (Hmax/Mmax), which reports the percentage of motor neurons activated by electrical stimulation of Group Ia muscle sensory neurons. Increased spinal cord excitability would be reflected in a larger Hmax/Mmax. We found that LPS-induced inflammation does not alter the Hmax/Mmax. While we found no evidence of changes in spinal cord excitability, inflammation could be altering Group Ia muscle spindle afferent responses to stretch. Future studies will test whether stretch reflex strength is altered by inflammation

    Oral, nasal and pharyngeal exposure to lipopolysaccharide causes a fetal inflammatory response in sheep.

    Get PDF
    BackgroundA fetal inflammatory response (FIR) in sheep can be induced by intraamniotic or selective exposure of the fetal lung or gut to lipopolysaccharide (LPS). The oral, nasal, and pharyngeal cavities (ONP) contain lymphoid tissue and epithelium that are in contact with the amniotic fluid. The ability of the ONP epithelium and lymphoid tissue to initiate a FIR is unknown.ObjectiveTo determine if FIR occurs after selective ONP exposure to LPS in fetal sheep.MethodsUsing fetal recovery surgery, we isolated ONP from the fetal lung, GI tract, and amniotic fluid by tracheal and esophageal ligation and with an occlusive glove fitted over the snout. LPS (5 mg) or saline was infused with 24 h Alzet pumps secured in the oral cavity (n = 7-8/group). Animals were delivered 1 or 6 days after initiation of the LPS or saline infusions.ResultsThe ONP exposure to LPS had time-dependent systemic inflammatory effects with changes in WBC in cord blood, an increase in posterior mediastinal lymph node weight at 6 days, and pro-inflammatory mRNA responses in the fetal plasma, lung, and liver. Compared to controls, the expression of surfactant protein A mRNA increased 1 and 6 days after ONP exposure to LPS.ConclusionONP exposure to LPS alone can induce a mild FIR with time-dependent inflammatory responses in remote fetal tissues not directly exposed to LPS
    corecore